• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Chemical Reaction Engineering CRT
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • UnivIS
  • Mein Campus
  • StudOn
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Institute of Chemical Reaction Engineering CRT
Navigation Navigation close
  • Institute
    • Contact and directions
    • Staff
    • History
    • Open positions
    • New Building Technical Chemistry
    Portal Institute
  • Research
    • Joint Projects
    • Equipment
    • Publications
    • Research Groups
    Portal Research
  • Teaching
    • CRT Courses
    • Thesis options
    • Southern German Catalysis Teaching Network
    Portal Teaching
  1. Home
  2. Research
  3. Research Groups
  4. Complex Catalyst Systems and Continuous Processes
  5. Biomass and Sustainable Production of Platform Chemicals
  6. Selective electron beam melting of catalytic active materials

Selective electron beam melting of catalytic active materials

In page navigation: Research
  • Joint Projects
  • Research Groups
    • Complex Catalyst Systems and Continuous Processes
      • Biomass and Sustainable Production of Platform Chemicals
        • Development and application of heterogeneous POM-based catalysts
        • Dynamic Methanation of Electrolysis-Hydrogen
        • Dynamic Methanation of Electrolysis-Hydrogen
        • E2Fuels-Development of a single-stage reaction concept for methanol-synthesis from CO2 and renewable hydrogen via in-situ sorption
        • Fractionation and selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose
        • Increased value added from biogenic raw materials by selective hydrogenation of biobased platform chemicals
        • Influence of N- and O-containing heteroatoms on the continuous oxidative desulfurization of liquid fuels
        • Optimization of catalysts for a dynamic methanol synthesis process
        • OxFA-process- Oxidative conversion of biomass to formic acid
        • Oxidative-extractive desulfurization of liquid fuels with polyoxometalate catalysts
        • Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)
        • Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)
        • Selective electron beam melting of catalytic active materials
        • Selective hydrogenation of biomass derived compounds to biofuels using polyoxometalate Catalysts
        • Sustainable production of acrylic acid
        • Sustainable production of acrylic acid
        • Sustainable production of acrylic acid
        • Sustainable use of electrical excess energy gained from renewable resources
      • Hybrid Materials (HyMat) for Catalysis and Purification
      • Hydrogen and Energy
      • Performance and Synthesis of Ionic Liquid
      • Supported Ionic Liquid Phase (SILP) Catalysis
    • Hetergeneous Catalysis and Porous Materials

Selective electron beam melting of catalytic active materials

We could not find any entry with the given search term 256.

Selective electron beam melting (SEBM) is an additive manufacturing technique for producing metal parts from a powder bed. For producing complex three-dimensional parts, the metal powder is melted layer by layer with an electron beam in high vacuum. So far, copper is not regular used in additive manufacturing. Based on the high potential catalytic activity and the good thermal conductivity, the material copper draws interest for process engineering applications. As part of the current DFG project, a structured reactor based on copper material should be printed in the cooperation of ZMP (Joint Institute of Advanced Materials and Processes) and CRT (Institute of Chemical Reaction Engineering). The structured reactor with integrated catalyst should be optimized in terms of heat- and mass transport.

State of the art is to functionalize an inert three dimensional carrier structure by coating with the active material. This procedure involves several process steps (multiple coating, calcination, catalytic activation). In addition, possible problems with the long-term stability of the coating and the comparatively low loading with active catalyst per structure volume are avoided by a newly developed leaching process.

Based on the principal of Raney®, aluminum should leached selectively out of a copper-aluminum alloy to produce nanoporous copper. In this project, a structured CuAl structure is selective leached. Depending on the leach deep, the structured material consists of complete active material. The goal is to produce a highly active and stable structured reactor by optimizing the SEBM process for the production of the CuAl structures and the subsequent leaching process.

Addition information

Image Movie

The institute wants to thank Stephanie Sinzger and Sandra Rachinger for designing and shooting the image movie. It was part of a semester project in the fields of multimedia and communication (FH Ansbach).

Display external content

At this point content of an external provider (source: Vimeo) is integrated. When displaying, data may be transferred to third parties or cookies may be stored, therefore your consent is required.

You can find more information and the possibility to revoke your consent in our privacy policy.

I agree

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Egerlandstr. 3
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up