• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Chemical Reaction Engineering CRT
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • UnivIS
  • Mein Campus
  • StudOn
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Institute of Chemical Reaction Engineering CRT
Navigation Navigation close
  • Institute
    • Contact and directions
    • Staff
    • History
    • Open positions
    • New Building Technical Chemistry
    Portal Institute
  • Research
    • Joint Projects
    • Equipment
    • Publications
    • Research Groups
    Portal Research
  • Teaching
    • CRT Courses
    • Thesis options
    • Southern German Catalysis Teaching Network
    Portal Teaching
  1. Home
  2. Research
  3. Research Groups
  4. Complex Catalyst Systems and Continuous Processes
  5. Biomass and Sustainable Production of Platform Chemicals
  6. Selective hydrogenation of biomass derived compounds to biofuels using polyoxometalate Catalysts

Selective hydrogenation of biomass derived compounds to biofuels using polyoxometalate Catalysts

In page navigation: Research
  • Joint Projects
  • Research Groups
    • Complex Catalyst Systems and Continuous Processes
      • Biomass and Sustainable Production of Platform Chemicals
        • Development and application of heterogeneous POM-based catalysts
        • Dynamic Methanation of Electrolysis-Hydrogen
        • Dynamic Methanation of Electrolysis-Hydrogen
        • E2Fuels-Development of a single-stage reaction concept for methanol-synthesis from CO2 and renewable hydrogen via in-situ sorption
        • Fractionation and selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose
        • Increased value added from biogenic raw materials by selective hydrogenation of biobased platform chemicals
        • Influence of N- and O-containing heteroatoms on the continuous oxidative desulfurization of liquid fuels
        • Optimization of catalysts for a dynamic methanol synthesis process
        • OxFA-process- Oxidative conversion of biomass to formic acid
        • Oxidative-extractive desulfurization of liquid fuels with polyoxometalate catalysts
        • Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)
        • Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)
        • Selective electron beam melting of catalytic active materials
        • Selective hydrogenation of biomass derived compounds to biofuels using polyoxometalate Catalysts
        • Sustainable production of acrylic acid
        • Sustainable production of acrylic acid
        • Sustainable production of acrylic acid
        • Sustainable use of electrical excess energy gained from renewable resources
      • Hybrid Materials (HyMat) for Catalysis and Purification
      • Hydrogen and Energy
      • Performance and Synthesis of Ionic Liquid
      • Supported Ionic Liquid Phase (SILP) Catalysis
    • Hetergeneous Catalysis and Porous Materials

Selective hydrogenation of biomass derived compounds to biofuels using polyoxometalate Catalysts

We could not find any entry with the given search term 256.

In order to increase the material value added from biomass, which is the only renewable carbon source available, secondary energy sources derived from biomass are converted into higher-quality platform chemicals by hydrogenation in the proposed research project. For this purpose, the bio derived compounds Dimethylfuran, Methylfuran, and furan in combination with renewable hydrogen from i.e. electrolysis will be hydrogenated to bio-hexanol, bio-pentanol and bio-butanol, respectively. Those alcohols have a great importance in many industrial branches.

In this project, a benchmark using commercial catalysts will be tested for the hydrogenation reaction of those bio-mass derived Compounds at first, then various polyoxometalate structures should be synthesized and used as selective hydrogenation catalysts for the production of the above mentioned bio-alcohols. These bio-alcohols are used as solvents for the extraction of essential oils, natural resins, dyes and antibiotics, as well as a component of hydraulic and brake fluids. In addition, they are considered as potential biofuels that can replace diesel and gasoline fuels.

This project is founded by DAAD since April 2019 in the form of a German Egyptian Research Long-term Scholarship (GERLS).

Addition information

Image Movie

The institute wants to thank Stephanie Sinzger and Sandra Rachinger for designing and shooting the image movie. It was part of a semester project in the fields of multimedia and communication (FH Ansbach).

Display external content

At this point content of an external provider (source: Vimeo) is integrated. When displaying, data may be transferred to third parties or cookies may be stored, therefore your consent is required.

You can find more information and the possibility to revoke your consent in our privacy policy.

I agree

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Egerlandstr. 3
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up