• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute of Chemical Reaction Engineering CRT
  • FAUTo the central FAU website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Suche öffnen
  • en
  • de
  • UnivIS
  • Mein Campus
  • StudOn
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Institute of Chemical Reaction Engineering CRT
Navigation Navigation close
  • Institute
    • Contact and directions
    • Staff
    • History
    • Open positions
    • New Building Technical Chemistry
    Portal Institute
  • Research
    • Joint Projects
    • Equipment
    • Publications
    • Research Groups
    Portal Research
  • Teaching
    • CRT Courses
    • Thesis options
    • Southern German Catalysis Teaching Network
    Portal Teaching
  1. Home
  2. Research
  3. Research Groups
  4. Complex Catalyst Systems and Continuous Processes
  5. Biomass and Sustainable Production of Platform Chemicals
  6. Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)

Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)

In page navigation: Research
  • Joint Projects
  • Research Groups
    • Complex Catalyst Systems and Continuous Processes
      • Biomass and Sustainable Production of Platform Chemicals
        • Development and application of heterogeneous POM-based catalysts
        • Dynamic Methanation of Electrolysis-Hydrogen
        • Dynamic Methanation of Electrolysis-Hydrogen
        • E2Fuels-Development of a single-stage reaction concept for methanol-synthesis from CO2 and renewable hydrogen via in-situ sorption
        • Fractionation and selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose
        • Increased value added from biogenic raw materials by selective hydrogenation of biobased platform chemicals
        • Influence of N- and O-containing heteroatoms on the continuous oxidative desulfurization of liquid fuels
        • Optimization of catalysts for a dynamic methanol synthesis process
        • OxFA-process- Oxidative conversion of biomass to formic acid
        • Oxidative-extractive desulfurization of liquid fuels with polyoxometalate catalysts
        • Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)
        • Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)
        • Selective electron beam melting of catalytic active materials
        • Selective hydrogenation of biomass derived compounds to biofuels using polyoxometalate Catalysts
        • Sustainable production of acrylic acid
        • Sustainable production of acrylic acid
        • Sustainable production of acrylic acid
        • Sustainable use of electrical excess energy gained from renewable resources
      • Hybrid Materials (HyMat) for Catalysis and Purification
      • Hydrogen and Energy
      • Performance and Synthesis of Ionic Liquid
      • Supported Ionic Liquid Phase (SILP) Catalysis
    • Hetergeneous Catalysis and Porous Materials

Selective catalytic oxidation of biogenic resources to organic acids using multiphasic reaction system including in-situ product isolation (SelkatOx)

We could not find any entry with the given search term 256.

Biomass can be rated as another important energy resource. The latter is defined as all substance of organic origin, which contains carbon – for example cellulose or polysaccharides from plants. While wind- and solar energy fluctuate depending on the weather, biomass is seasonal available and represents as an energy resource the only regenerative carbon-source. To harness the naturally grown biomass effectively the conversion into easier to handle substances is intended. In this way the energy density is increased and the transport becomes more efficient. Lignocellulosic biomass appears to be suitable as a renewable resource. It is the main component of plant material and consists mainly of cellulose, hemicellulose and lignin.

By using polyoxometalate catalysts (POMs) which are part of intensive research at the CRT for a considerable time, desired products like acetic or formic acid could be detected after the oxidation of lignocellulosic biomass. The objective of this research is producing further technical relevant organic acids by applying defined reaction conditions. The property of the catalyst to support different routes of degradation depending on the reaction conditions is considered as very important.

http://www.stromneu.de/biomasse.php
M. Niu, Y. Hou, S. Ren, W. Wang, Q. Zheng und W. Wu, „The relationship between oxidation and hydrolysis in the conversion of cellulose in NaVO3 – H2SO4 aqueous solution with O2“, Green Chemistry, 2015, 17, 335-342

This project harbors great potential since also the hardly accessible lignin can be converted by choosing suitable catalysts and process conditions in contrary to traditional wood refining processes. Previous experiments showed that there is a relation between reaction temperature and acid yield. So it became apparent that increasing temperatures lead to higher acids. The objective is now to understand the complex, simultaneous running processes during the catalytic conversion and to optimize the yield of the desired valuable product. With our research we contribute to an enhanced production of platform chemicals out of renewable resources to enable a sustainable alternative to fossil carbon sources.
This project is financially supported by the Vector-Stiftung under the funding code 2016-033 for a period of about 2 years.

Addition information

Image Movie

The institute wants to thank Stephanie Sinzger and Sandra Rachinger for designing and shooting the image movie. It was part of a semester project in the fields of multimedia and communication (FH Ansbach).

Display external content

At this point content of an external provider (source: Vimeo) is integrated. When displaying, data may be transferred to third parties or cookies may be stored, therefore your consent is required.

You can find more information and the possibility to revoke your consent in our privacy policy.

I agree

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Egerlandstr. 3
91058 Erlangen
  • Imprint
  • Privacy
  • Accessibility
  • Facebook
  • RSS Feed
  • Twitter
  • Xing
Up